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J. Phys. A: Math. Gen. 16 (1983) L73-LSO. Printed in Great Britain 

LElTER TO THE EDITOR 

The spectrum of fluctuations around Sompolinsky’s mean 
field solution for a spin glass 

I Kondort and C De Dominicis 
DPh-T, CEN Saclay, 91 191 Gif-sur-Yvette Cedex, France 

Received 1 November 1982 

Abstract. The spectrum of the stability matrix associated with Sompolinsky’s solution for 
a long-range spin glass is studied near T, in a magnetic field. It is shown that the 
reparametrisation (or gauge) invariance of the theory locks together not only the order 
parameters q ( x )  and A ( x )  but also their fluctuations, and gives rise to a gauge-invariant 
spectrum which is therefore the same both for the Parisi and for the Sompolinsky solution. 
In the limit of zero magnetic field our earlier results for the Parisi solution are recovered. 
The marginal stability of both theories is demonstrated for all fields in the Almeida- 
Thouless phase. 

One of the most fascinating features of the recently proposed mean field theories of 
spin glasses is the appearance of a continuum of order parameters: the replica 
symmetry-breaking solution by Parisi (1979) of the model of Sherrington and Kirk- 
patrick (1975, to be referred to as SK) is based on an order parameter (OP) function 
q ( x )  defined over the interval O C X  c 1, while by a completely different, dynamic 
approach Sompolinsky (1981) was led to a free energy functional F depending upon, 
besides the OP function q ( x ) ,  an anomaly function A ( x ) .  The requirement of stationar- 
ity of F can be shown to provide a relationship between q and A .  This in turn allows 
the anomaly to be eliminated, leading back to a single OP function theory. Indeed, 
there is ample evidence now (though complete proof is still lacking$) for the 
equivalence of the two theories as to their thermodynamic consequences. Thermody- 
namic equivalence on the mean field level does not necessarily imply full equivalence 
for all possible observables, however. Sompolinsky argued that ‘once fluctuations are 
introduced there is no reason why independent variations in q ( x )  and A ( x )  should 
not be considered’. This would then suggest that the eigenvalue spectrum of the 
stability matrix (Hessian) may be different in the two theories. One may wonder, for 
example, whether a zero mode exists also in Sompolinsky’s theory. In fact, it transpired 
very clearly both in the restricted stability analysis of the Parisi solution by Thouless 
et a1 (1980, to be referred to as TAK) and in the more recent, complete analysis by 
the present authors (De Dominicis and Kondor 1982)O that the existence of a zero 
eigenvalue of the Hessian was closely related to a particular feature of Parisi’s q ( x ) ,  

f Permanent address: Institute for Theoretical Physics, Eotvos University, Budapest, Hungary. 
$ Proof is still lacking of the monotonic behaviour of A ’ ( x ) / q ’ ( x ) .  
5 The stability analysis around the Parisi solution has also been performed independently by Goltsev (1982). 
His method exhibits eigenvalues of which only the third family agrees with ours, but does not provide 
eigenvector equations. 
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namely to the fact that it becomes independent of x beyond a certain interval (xo, xl) 
whose limits are determined by the temperature T and external field H. A flat piece 
in q ( x )  gives no contribution to Sompolinsky’s functional integral, however, so it can 
be regarded as unphysical, which then sheds doubt on the physical reality of the zero 
mode itself. 

Motivated by the above considerations, we performed a stability analysis of the 
Sompolinsky solution, analogous to our previous work on Parisi’s solution, but also 
including an external field this time. Our purpose here is to report the results of this 
work and to sketch how they can be obtained. Our principal conclusion is that the 
spectra of fluctuations around the two solutions are identical. 

We take as a starting point the same truncated model free energy, introduced by 
Parisi (1979), that we used previously: 

where qaB is a real, symmetric n x n matrix, zero along the diagonal, n is the number 
of replicas and 7 = ( T c - T ) / T c  is the reduced temperature. Equation (1) is a good 
representation of the SK model near T,. De Dominicis et a1 (1981) demonstrated 
that Sompolinsky’s free energy functional can be derived on a purely static basis by 
considering a particular type of replica symmetry-breaking scheme. In that scheme 
one divides the OP matrix qae into big blocks of size p o  x p o  and makes a Parisi type 
of hierarchical subdivision of both the diagonal and off-diagonal big blocks into blocks 
of size Pk (k = 1 , 2 , .  . . , R) with matrix elements qk and rk in the diagonal and 
off-diagonal blocks, respectively. In the limit when the replica number n + 0 the Pk 
are able to tend to infinity in a prescribed order, namely such that Pk+l/Pk + 0, while 
Pk(qk - rk) = -A; is kept finite. In the continuous limit R + CO, A’ turns out to be of 
O( l /R) ,  For the free energy functional (1) then one finds 

1 1 1 

F = T Io dt q(t)Ar(t)+fTq2(1) -fq3(1) -1 d tq ( t )A’ ( t )  [ ds A’(s) 
0 I 

1 1 1 

- q ( l )  [ d t q ( t ) A ’ ( t ) + f  lo dtq3(t)A‘(t)+i$q4(1)+iH2 lo dt A’(t). (2) 

The functions q ( x )  and A(x) are identified with Sompolinsky’s OP functions; the prime 
on A means derivative. The stationarity conditions for (2) are 

0 

A’(X)(T-[~’ dt A ’ ( f ) + q 2 ( ~ ) - ~ ( l ) ) = A ’ ( ~ ) G ( ~ ) = 0  (3) 

1 

~q ( x  ) - q ( x  ) jx dt A’@) - [ ’ dt q (t)A’(t - q (1 )q ( x  + iq 3(x + $Y2 = 0. 
0 

(4) 
The x derivative of (4) gives q’(x)G(x) = 0; hence the two stationarity conditions are 
basically the same. (This is a general feature, unrelated to the simplification involved 
in the model (l), and it can be shown that the stationarity conditions always reduce 
to a form like q ’ ( x ) G ( x )  = A’(x)G(x) = 0.) Returning now to conditions (3) and (4), 
we can see that if q’ and A’ vanish for some x E (0 , l )  at all, they vanish simultaneously. 
(4’ = A’ = 0 for all x E (0, 1) is the case of no symmetry breaking which we exclude 
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here.) Whenever q’, A’ # 0 they are connected by G ( x )  = 0 leading, upon differenti- 
ation, to 

A ‘ ( x )  = - 2 q ( x ) q ’ ( x ) .  ( 5 )  

-q(1) +&) = 0 (6) 

Using this and taking G ( x )  = 0 at x = 1 gives 

which is the same as the condition for the maximum of Parisi’s q ( x ) ,  while (4) taken 
at x = 0 gives 

q(0)  = (&2)1’3, (7)  

the minimum of Parisi’s q ( x ) .  No other conditions are imposed upon q ( x )  and A ( x ) ,  
a fact reflecting the invariance of the theory with respect to a reparametrisation of x,  
analogous to a local gauge transformation, as stressed by Sompolinsky. For this reason 
we call G ( x )  = 0, or its corollary ( 5 ) ,  the gauge condition and note that it holds, in 
the ordered phase, for all x E (0, l), irrespective of whether q’ and A’ vanish there or 
not. It is also clear that (3) and (4) do not select a single point in replica space as the 
solution of the extremum problem, but rather define an invariant orbit wnose points 
should all be equivalent from the point of view of observables. Parisi’s scheme 
corresponds to choosing a particular gauge, in which q ( x )  = x / 2 ,  x o < x  < X I ,  with 
x o  = 2q(O),  x 1  = 2 q (  l ) ,  and q ( x )  = constant otherwise. In order to be able to decide 
whether the existence of the zero mode depends on these flat pieces or not, we will, 
in contrast, commit ourselves to the type of solutions for which q’ and A’ do not vanish 
for any 0 < x < 1 in the spin glass phase. For a sufficiently strong field, however, q ( O )  
becomes equal to q( l ) ,  and one is forced to choose the solution q’=A‘=O of the 
stationarity equations, corresponding to the transition of de Almeida and Thouless 
( 1 9 7 8 ,  to be referred to as AT). 

Coming to the question of stability we can follow our earlier analysis for the Parisi 
scheme rather closely. It can, in particular, be seen that the simplest vectors solving 
the eigenvalue equations 

(A +27+2q;p) fOp + 1 ( q a v f v ~ + q p v f ~ ~ ) = O  a , p , y = l , 2  , . . . ,  n (8) 
7 Z O . P  

of the Hessian associated with ( 1 )  have the same structure as the stationarity point 
itself, i.e. they can be represented by symmetric n x n matrices, zero along the diagonal, 
and subdivided into smaller and smaller blocks as described in the case of qap above. 
The matrix elements on the kth level of hierarchy will be called fk and g k  in the 
diagonal and off-diagonal big blocks, respectively. The set of trial vectors of this 
structure constitutes our first family of eigenvectors. 

Substituting this unsutz into (8) yields a set of coupled linear equations for fk and 
gk. In the limit n = 0, P k  -, 03, P k + l / P k  -, 0 one observes again that the combination 
h k  = -limpk+m P k  (fk - g k )  remains finite. Taking finally the continuous limit R + 03 one 
ends up with a set of two coupled integral equations for f ( x )  and h ( x ) :  

1 

A f ( x ) = 2 q O (  [ d th ( t )+ f (1 ) )+2  [ ‘ d t  0 ( q ( t ) h ( r ) + f ( t ) A ’ ( f ) )  ( 9 )  

1 

Ah (x) = 2A’(x) (  - 2 q ( x ) f ( x )  +f(l) + [ dt h ( t ) ) .  (10) 
X 
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Taking the derivative of (9) and assuming A # O  we immediately recognise that a 
relation similar to (5) exists between h and f’: 

h(x) = -2q(x)f’(x). (11) 
Substituting (1 1) back into (9) reduces the problem to solving a single integral equation. 
In order to exhibit the gauge independence of the eigenvalues we go over into a 
manifestly invariant form by inverting the function q(x)  (permitted by q’ # 0) and 
introducing q ( q )  =f(x  (4)) .  The stability equation then becomes 

fAcp ( 4 )  = qcp (sd(1- 241) + 24 I dt cp ( t )  + 2 f: dt tcp 0) + 2 q h  (40) (12) 

where 41 and 40 are the extrema1 values of the independent variable q, given by (6) 
and (7) respectively. Repeated differentiation reduces (12) to the oscillator equation. 
The eigenvalues A = l / w 2  are determined by 

41 

This yields exactly the same spectrum as that found by TAK (de Almeida 1980) in the 
stability analysis of the Parisi solution. The spectrum is discrete and consists of a 
large eigenvalue A. = 2ql, basically independent of 40, and a series of small eigenvalues 

A, = 4 q : / m 2 ~ 2  m = l , 2 ,  . . .  for q o = O  

Am ={ 4(qi -40)’ 
(m - 

All these eigenvalues are positive, but they accumulate around zero. On approaching 
the AT line all the small eigenvalues vanish. 

At this point we have to remember that the possibility of finding a zero eigenvalue 
has been excluded when deriving the condition (11). In order to decide whether A = 0 
is admissible or not we go back to the original set of equations (9) and (10). Setting 
A = 0 there we discover that the relation to replace (11) is now 

84:(41-40) m = l  

forqO=ql .  (14) 
m = 2 , 3 , .  . . 

h!x) = -2(q(x)f(x))‘ (15) 
and that the corresponding eigenvector is largely arbitrary, subject only to the condition 

It seems worthwhile emphasising that the set of coupled integral equations (9) and 
(10) could have been derived without making any reference to the replica method, 
but taking the derivatives of the Sompolinsky functional near T, with respect to q (x) 
and A’(x) directly. Therefore the spectrum found above cannot be regarded as an 
artefact of replicas; instead one has to conclude that the full TAK spectrum, including 
the zero mode, is there also in Sompolinsky’s theory, despite it being free of the flat 
piece in q(x). 

The first family type eigenvectors considered so far do not exhaust all the possible 
solutions of the eigenvalue equation (8). In analogy with de Almeida and Thouless’ 
(1978) stability analysis around the replica symmetric solution or with our own analysis 
around the Parisi solution, we also have to consider ‘transverse’ fluctuations corres- 
ponding to additional replica symmetry breaking. The second family of eigenvectors 

f(0) = f ( l )  = 0. 
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can then be constructed by selecting a distinguished replica in each of the big blocks 
1,2,  , . . , n/po ,  and allowing the matrix elements fola to depend on the hierarchical 
distance to the distinguished replica in addition to depending on the hierarchical 
distance to the diagonal of the big block. (The precise definition of this new variable 
has been given by De Dominicis and Kondor (1982).) In the continuous limit we 
have then a pair of functions fz ( x )  and h, ( x )  defined over the unit square 0 =z x ,  z s 1. 
For x z= z these satisfy a set of equations identical to (9) and (10) with the new variable 
z playing the role of an added label only. For x < z we find 

+I‘ dt A ’ ( t ) h , ( x ) .  (17) 

The complete set of these four coupled integral equations can then be solved by 
observing that (i) for A # 0, h and f are again linked by a relation analogous to (11): 
h , ( x )  = - 2 q ( x ) a f , ( x ) / a x ,  O s z  =z 1, hence h can be eliminated, and (ii) the solutions 
of the remaining two equations for f z ( x ) ,  x B z ,  can be classified by a continuous 
parameter 0 S K =z 1 which plays the role of a breakpoint in the variable z :fz ( x )  = f K  ( x ) ,  

The eigenvalues in the second family then depend on K ,  i.e. they form continuous 
bands. The K = 0 edge of the bands coincides with the discrete spectrum found in the 
first family, which should be obvious from the fact that for K = 0, f ,  ( x )  does not depend 
on z at all and (16) and (17) are then reduced to (9) and (10). 

The whole second family spectrum can again be shown to be gauge invariant. If 
q q ( ~ )  the second family eigenvalues can be obtained from 

Z S K .  

where 

6 = qw/(q2w2 - 1 p 2  

( z 2 -  l)C”(z)+4zC’(z)+4C(z) = o  

c (60) = 6d 1 - 6: )/(I - 36: 

40<4 <41 

and C ( z )  is the solution of the Gegenbauer equation 

belonging to the initial conditions 

C’(S0) = 1 
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In (18) and (19) the cut of the square root is along the negative real axis. In zero 
field (qo = 0) these equations go over into what we found earlier in the Parisi case: 
there is again a large eigenvalue A = 2q1, to leading order independent of q, while the 
small eigenvalues start from their TAK values for 4 = 0 ( K  = 0), grow with increasing 
q and accumulate in a narrow strip around 7’ for q = 41. Approaching the AT line, 
40=q1, all the solutions disappear except the large eigenvalue which is basically 
independent of 4 0  also. 

An unstable mode (A <0) would correspond to a purely imaginary U :  it can be 
shown that no such solution of (18) and (19) exists. 

The third and last family of eigenvectors can be constructed by distinguishing two 
replicas in each big block. The matrix elementsf,@ will then depend on the hierarchical 
distance to the diagonal (x), the two distances to the two distinguished replicas (zl, z z ) ,  
and finally on an additional, fixed parameter ( p )  specifying the distance between the 
two distinguished replicas. In the continuous limit we have a pair of functionsfz,,,(x), 
gzIz,(x), O<x, zl, z 2 ,  p < 1, which satisfy a set of 12 coupled integral equations. A 
relation analogous to (11) reduces the number of equations to six and the solutions 
can be characterised by a pair of breakpoints K I  and K~ in the two directions z1 and 
z 2 .  The third family includes all the second family (just as the second included the 
first); the new eigenvalues correspond to the range in parameter space where K ~ ,  K~ s p .  
Here we can find the eigenvalues explicitly: 

(20) 
where p ,  r and q correspond to the values of the OP function q ( x )  at K ~ ,  K~ and p, 
respectively. The eigenvalues in (20) fill the interval (0,2(q: - q z ) ) ;  for zero field this 
is the same as what we found earlier in the Parisi case. 

With this we have shown that the spectra of fluctuations around the Parisi solution 
and the Sompolinsky solution as rederived via replicas are the same. We have also 
pointed out that the first family eigenvalues could have been obtained without the 
use of replicas. As for the second and third family eigenvalues, their derivation, at 
least in the present form, is obviously connected to a particular replica symmetry- 
breaking scheme. One may ask if they have any relevance for Sompolinsky’s theory 
in its original, dynamic form. The answer is that the eigenvalues of the Hessian have 
to show up as poles of various correlation functions. Sompolinsky and Zippelius 
(1983, and private communication) have recently made progress in calculating the 
correlation functions within the framework of their dynamic theory. They have been 
able in particular to determine the pole of four-point functions (double responses) in 
the limit when all three time intervals on which it depends are macroscopic, but one 
of them, to, separating the others, t l  and f 2 ,  is much larger (of the order of the largest 
relaxation time f0) than either r l  or t 2  (of the order of the smallest relaxation time 
71). If we regard our variables K ~ ,  K~ and p as the labels associated with the macroscopic 
times t l ,  f Z  and r o  according to Sompolinsky’s interpretation of the argument of Parisi’s 
q ( x ) ,  then the limit to >>tl, t 2  translates into K I ,  ~ 2 > p  +O. We find it very rewarding 
that the pole found by Sompolinsky and Zippelius agrees with the p = 0 limit of our 
equation (20): A = p 2  + r z .  It suggests that to recover the full equation (20) one should 
consider the case where t o  becomes larger than but comparable with t l  and tZ  in 
magnitude, while to find the second family eigenvalues (corresponding to K~ = tcZ < p )  

2 A = p 2 + r 2 - 2 q  q o < q c q 1  q l s p , r a q  
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one should try to consider the reverse limit to < rl, f2 or even to<< t l ,  t2 ( K ~  = K~ = 0, 
p = 1) for the first family. Calculating the poles of four-point functions may turn out 
to be rather hard in these cases, however. 

To conclude, we remark that the key to the observed gauge invariance of the 
spectrum for A > 0 is the relation (1 1) and its counterparts in the second and third 
families. The meaning of these relations is that not only q and A are linked at 
stationarity by a gauge condition, but also their fluctuations? around the extremum 
point. Replacing (11) by (15) (or by its analogues in the other two families) leads to 
a zero mode under very mild conditions being imposed upon the eigenvector, which 
seems to indicate that the zero mode carries an appreciable spectral weight. Approach- 
ing the AT line this weight must increase; right at the transition the spectrum consists 
of a large mass and zero only, thus smoothly joining the spectrum on the other side 
of the transition. 

Details of this work will be published elsewhere. 

The authors wish to thank G Parisi for discussions and encouragement. One of us 
(CD) is grateful to H Sompolinsky and A Zippelius for many discussions and communi- 
cations prior to publication of their results, and to the ASPEN Center for Physics for 
providing opportunity for the exchange. 
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